1a. Which of the methods below would be the most efficient way of solving the given calculation?

$$
\begin{array}{llll}
n ? & & \\
23 & x & 4 & =\square \\
\hline
\end{array}
$$

10	10	1	1	1
10	10	1	1	1
10	10	1	1	1
10	10	1	1	1

Use it to solve the calculation.
2a. Using the digit cards, create a calculation.

Use the most efficient method to solve it.
You could use a part-whole model, a place value grid or a number line.

3a. Sydney is solving 16×5.

10	1	1	1	1	1	1
10	1	1	1	1	1	1
10	1	1	1	1	1	1
10	1	1	1	1	1	1
10	1	1	1	1	1	1

She thinks the answer is 90.
Is she correct? Convince me!

1b. Which of the methods below would be the most efficient way of solving the given calculation?

$$
15 \times \quad 6=\square
$$

10	11111
10	11111
10	111111
10	11111
10	11111
10	111111

Use it to solve the calculation.
2b. Using the digit cards, create a calculation.

Use the most efficient method to solve it. You could use a part-whole model, a place value grid or a number line.
圆
3b. Asher is solving 19×4.

10	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1

He thinks the answer is 76 .
Is he correct? Convince me!

