5a. Match the pairs of numbers to the equations.

$18+22$	$a \times b=40$
12×6	$c+d=40$
$51+21$	$e \times f=72$
5×8	$\boldsymbol{j}+\boldsymbol{k}=72$

6a. Which set of values is the odd one out?

$$
\begin{aligned}
& \qquad \quad \times \quad S \quad=48 \\
& \begin{array}{c}
r=4 \\
s=12
\end{array} \\
& \left.\begin{array}{c}
r=6 \\
s=8
\end{array}\right) \\
& \begin{array}{l}
r=7 \\
s=6
\end{array} \\
& \begin{array}{l}
\text { 7a. Tick the options that satisfy the } \\
\text { equation. }
\end{array} \\
& n+m=54
\end{aligned}
$$

A. $n=18 \quad m=36$
B. $n=25 \quad m=31$
C. $n=39 \quad m=15$
D. $n=27 \quad m=29$

8a. Sophie can only find 7 pairs of integer values for x and y. How many more are there?

$$
x+y=11
$$

5b. Match the pairs of numbers to the equations.

$71-47$	
$72 \div 3$	
$97-85$	
$96 \div 8$	
$a \div d=24$	

6b. Which set of values is the odd one out?

$$
\begin{gathered}
r \quad \times \quad s=42 \\
\begin{array}{c}
r=7 \\
s=6
\end{array} \quad \begin{array}{c}
r=3 \\
s=14
\end{array} \quad \begin{array}{c}
r=13 \\
s=4
\end{array}
\end{gathered}
$$

7b. Tick the options that satisfy the equation.

$$
n-m=36
$$

A. $n=66 \quad m=33$
B. $n=36 \quad m=27$
C. $n=81 \quad m=45$
D. $n=50 \quad m=24$

8b. Joseph can only find 3 pairs of integer values for x and y. How many more are there?

$$
x \quad x \quad y=18
$$

9a. Match the pairs of numbers to the equations.

$-18+31$
$23.2-12.1$
$49 \div 7$
$31.4-12.5$

9b. Match the pairs of numbers to the equations.

$-47-13$	
$a \div b=17$	
12.5×5	
$c-d=-60$	
5.5×12	
$68 \div 4$	

10b. Which set of values is the odd one out?

$$
\begin{gathered}
r-s=13.7 \\
\begin{array}{c}
r=5.8 \\
s=-7.9
\end{array} \begin{array}{c}
r=-2.2 \\
s=-15.9
\end{array} \begin{array}{c}
r=4.3 \\
s=-11.5
\end{array}
\end{gathered}
$$

11b. Tick the options that satisfy the equation.

$$
n+m=40
$$

A. $n=-32 \quad m=72$
B. $n=12 \quad m=3$
C. $n=27.5 \quad m=12.5$
D. $n=48 \quad m=8$

12b. Kobi can only find 11 pairs of integer values below 20 for x and y. How many more are there?

$$
x-y=-2
$$

